Friday 13 October 2017

Un Proceso De Media Móvil


2.1 Modelos de media móvil (modelos MA) Modelos de series temporales conocidos como modelos ARIMA pueden incluir términos autorregresivos y / o términos de media móvil. En la semana 1, aprendimos un término autorregresivo en un modelo de series de tiempo para la variable x t es un valor retrasado de x t. Por ejemplo, un término autorregresivo de retardo 1 es x t-1 (multiplicado por un coeficiente). Esta lección define los términos del promedio móvil. Un término medio móvil en un modelo de serie temporal es un error pasado (multiplicado por un coeficiente). Dejamos (wt desbordamiento N (0, sigma2w)), lo que significa que los w t son idéntica, independientemente distribuidos, cada uno con una distribución normal que tiene la media 0 y la misma varianza. El modelo de media móvil de primer orden, denotado por MA (1) es (xt mu wt theta1w) El modelo de media móvil de segundo orden, denotado por MA (2) es (xt mu wt theta1w theta2w) , Denotado por MA (q) es (xt mu wt theta1w theta2w puntos thetaqw) Nota. Muchos libros de texto y programas de software definen el modelo con signos negativos antes de los términos. Esto no cambia las propiedades teóricas generales del modelo, aunque sí cambia los signos algebraicos de los valores estimados de los coeficientes y los términos (no cuadrados) en las fórmulas para las ACF y las varianzas. Usted necesita comprobar su software para verificar si los signos negativos o positivos se han utilizado con el fin de escribir correctamente el modelo estimado. R utiliza signos positivos en su modelo subyacente, como lo hacemos aquí. Propiedades teóricas de una serie temporal con un modelo MA (1) Tenga en cuenta que el único valor distinto de cero en el ACF teórico es para el retardo 1. Todas las demás autocorrelaciones son 0. Por lo tanto, una ACF de muestra con una autocorrelación significativa sólo con el retardo 1 es un indicador de un posible modelo MA (1). Para los estudiantes interesados, las pruebas de estas propiedades son un apéndice a este folleto. Ejemplo 1 Supongamos que un modelo MA (1) es x t 10 w t .7 w t-1. Donde (wt overset N (0,1)). Así, el coeficiente 1 0,7. El ACF teórico se da por un diagrama de esta ACF sigue. La gráfica que se muestra es la ACF teórica para un MA (1) con 1 0,7. En la práctica, una muestra no suele proporcionar un patrón tan claro. Utilizando R, simulamos n 100 valores de muestra utilizando el modelo x t 10 w t .7 w t-1 donde w t iid N (0,1). Para esta simulación, sigue un diagrama de series de tiempo de los datos de la muestra. No podemos decir mucho de esta trama. A continuación se muestra el ACF de muestra para los datos simulados. Observamos un pico en el retraso 1 seguido por valores generalmente no significativos para los retrasos de 1. Obsérvese que la muestra ACF no coincide con el patrón teórico del MA subyacente (1), que es que todas las autocorrelaciones para los retrasos de 1 serán 0.Una muestra diferente tendría una ACF de muestra ligeramente diferente mostrada abajo, pero probablemente tendría las mismas características amplias. Propiedades Terapéuticas de una Serie de Tiempo con un Modelo MA (2) Para el modelo MA (2), las propiedades teóricas son las siguientes: Obsérvese que los únicos valores distintos de cero en la ACF teórica son para los retornos 1 y 2. Las autocorrelaciones para retardos mayores son 0 . Por lo tanto, una muestra de ACF con autocorrelaciones significativas en los intervalos 1 y 2, pero autocorrelaciones no significativas para retardos mayores, indica un posible modelo MA (2). Iid N (0,1). Los coeficientes son 1 0,5 y 2 0,3. Dado que se trata de una MA (2), la ACF teórica tendrá valores distintos de cero sólo en los retornos 1 y 2. Los valores de las dos autocorrelaciones distintas de cero son: Un gráfico del ACF teórico sigue. Como casi siempre es el caso, los datos de la muestra no se comportarán tan perfectamente como la teoría. Se simularon 150 valores de muestra para el modelo x t 10 w t .5 w t-1 .3 w t-2. Donde w t iid N (0,1). A continuación se muestra el gráfico de la serie de tiempo de los datos. Al igual que con el gráfico de la serie de tiempo para los datos de la muestra MA (1), no se puede decir mucho de ella. A continuación se muestra el ACF de muestra para los datos simulados. El patrón es típico para situaciones donde un modelo MA (2) puede ser útil. Hay dos picos estadísticamente significativos en los intervalos 1 y 2, seguidos de valores no significativos para otros desfases. Tenga en cuenta que debido al error de muestreo, la muestra ACF no coincide exactamente con el patrón teórico. ACF para modelos MA (q) Una propiedad de los modelos MA (q) en general es que hay autocorrelaciones no nulas para los primeros q retrasos y autocorrelaciones 0 para todos los retrasos gt q. No unicidad de la conexión entre los valores de 1 y (rho1) en MA (1) Modelo. En el modelo MA (1), para cualquier valor de 1. El 1/1 recíproco da el mismo valor para. Por ejemplo, use 0.5 para 1. Y luego utilice 1 / (0,5) 2 para 1. Youll get (rho1) 0.4 en ambos casos. Para satisfacer una restricción teórica llamada invertibilidad. Limitamos los modelos MA (1) a tener valores con valor absoluto menor que 1. En el ejemplo dado, 1 0,5 será un valor de parámetro permisible, mientras que 1 1 / 0,5 2 no. Invertibilidad de los modelos MA Se dice que un modelo MA es invertible si es algebraicamente equivalente a un modelo de orden infinito convergente. Al converger, queremos decir que los coeficientes de AR disminuyen a 0 a medida que retrocedemos en el tiempo. Invertibilidad es una restricción programada en el software de la serie de tiempo usado para estimar los coeficientes de modelos con términos de MA. No es algo que buscamos en el análisis de datos. En el apéndice se proporciona información adicional sobre la restricción de la invertibilidad para los modelos MA (1). Nota de Teoría Avanzada. Para un modelo MA (q) con un ACF especificado, sólo hay un modelo invertible. La condición necesaria para la invertibilidad es que los coeficientes tienen valores tales que la ecuación 1- 1 y-. - q y q 0 tiene soluciones para y que caen fuera del círculo unitario. Código R para los Ejemplos En el Ejemplo 1, se representó la ACF teórica del modelo x $ _ {t} $ w $ _ {t} $. 7w t - 1. Y luego se simularon 150 valores de este modelo y se representaron las series de tiempo de muestra y la muestra ACF para los datos simulados. Los comandos R usados ​​para trazar el ACF teórico fueron: acfma1ARMAacf (mac (0.7), lag. max10) 10 retardos de ACF para MA (1) con theta1 0.7 lags0: 10 crea una variable llamada lags que va de 0 a 10. plot Abline (h0) añade un eje horizontal al diagrama El primer comando determina el ACF y lo almacena en un objeto (a0) Llamado acfma1 (nuestra elección de nombre). El comando plot (el 3er comando) traza retrasos en comparación con los valores ACF para los retornos 1 a 10. El parámetro ylab etiqueta el eje y y el parámetro principal coloca un título en la gráfica. Para ver los valores numéricos de la ACF simplemente utilice el comando acfma1. La simulación y las parcelas se realizaron con los siguientes comandos. Xcarzim. sim (n150, lista (mac (0.7))) Simula n 150 valores de MA (1) xxc10 agrega 10 para hacer la media 10. La simulación predeterminada significa 0. plot (x, typeb, mainSimulated MA (1) data) (X, xlimc (1,10), mainACF para datos de muestra simulados) En el Ejemplo 2, se representó el ACF teórico del modelo xt 10 wt. 5 w t-1 .3 w t-2. Y luego se simularon 150 valores de este modelo y se representaron las series de tiempo de muestra y la muestra ACF para los datos simulados. Los comandos R utilizados fueron acfma2ARMAacf (mac (0.5.0.3), lag. max10) acfma2 lags0: 10 trama (lags, acfma2, xlimc (1,10), ylabr, typeh, ACF principal para MA (2) con theta1 0,5, (X, typeb, principal serie MA simulado) acf (x, xlimc (1,10), x2) (1) Para los estudiantes interesados, aquí hay pruebas de las propiedades teóricas del modelo MA (1). Cuando x 1, la expresión anterior 1 w 2. Para cualquier h 2, la expresión anterior 0 (x) La razón es que, por definición de independencia del peso. E (w k w j) 0 para cualquier k j. Además, debido a que w t tiene una media 0, E (w j w j) E (w j 2) w 2. Para una serie de tiempo, aplique este resultado para obtener la ACF indicada anteriormente. Un modelo inversible MA es uno que puede ser escrito como un modelo de orden infinito AR que converge para que los coeficientes AR convergen a 0 a medida que avanzamos infinitamente en el tiempo. Bien demostrar invertibilidad para el modelo MA (1). A continuación, sustituimos la relación (2) por wt-1 en la ecuación (1) (3) (zt wt theta1 (z-theta1w) wt theta1z - theta2w) En el momento t-2. La ecuación (2) es entonces sustituimos la relación (4) por w t-2 en la ecuación (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Si continuáramos Sin embargo, si 1 1, los coeficientes que multiplican los retrasos de z aumentarán (infinitamente) en tamaño a medida que retrocedemos hacia atrás hora. Para evitar esto, necesitamos 1 lt1. Esta es la condición para un modelo de MA (1) invertible. Infinite Order MA model En la semana 3, veamos bien que un modelo AR (1) puede convertirse en un modelo de orden infinito MA: (xt - mu wt phi1w phi21w puntos phik1 w dots sum phij1w) Esta suma de términos de ruido blanco pasado es conocida Como la representación causal de un AR (1). En otras palabras, x t es un tipo especial de MA con un número infinito de términos remontándose en el tiempo. Esto se llama un orden infinito MA o MA (). Una orden finita MA es un orden infinito AR y cualquier orden finito AR es un orden infinito MA. Recordemos en la semana 1, observamos que un requisito para un AR estacionario (1) es que 1 lt1. Vamos a calcular el Var (x t) utilizando la representación causal. Este último paso utiliza un hecho básico sobre series geométricas que requiere (phi1lt1) de lo contrario la serie diverge. NavegaciónAcerca del promedio móvil AX 2012 Con la media móvil, el costo del producto se determina mediante el recibo de compra. Cuando se contabiliza la factura de compra, si hay una diferencia en el costo entre el recibo de compra y la factura de compra, la diferencia se ajusta proporcionalmente a los productos actuales en stock, y el importe restante se contabiliza como gasto. En este ejemplo, una orden de compra se crea y se recibe a un costo y la factura de compra se contabiliza con un costo diferente. Cree una orden de compra para una cantidad de 2 y un precio unitario de 10.00. Crear un recibo de compra del producto. Crear un pedido de cliente para una cantidad de 1 y un precio unitario de 10.00. Crear una factura de compra para una cantidad de 2 y un precio unitario de 12.00. La diferencia en el precio unitario, 2.00, se contabiliza en la diferencia de precio de la cuenta media móvil cuando se contabiliza la factura de compra. La razón es que dos productos fueron comprados por un costo de 20.00. Uno de los productos fue vendido por un precio unitario de 10.00. La factura de compra se contabilizó a un precio unitario de 12.00 con una cantidad de 2. El precio unitario del producto no se puede contabilizar a las 14.00 horas. Si necesita ajustar el costo promedio móvil de un producto, los ajustes de inventario se permiten a partir de la fecha de hoy. No es posible modificar un ajuste de inventario para corregir el coste medio móvil de un producto. No puede tener el flujo de costes a través de transacciones posteriores. En este ejemplo, el coste medio móvil se ajusta para un producto. Seleccione el producto para el que desea ajustar el coste medio móvil. La Revaluación de la forma media móvil examina el inventario disponible para un producto. El producto seleccionado tiene una cantidad publicada de 1, un valor de 12,00, un costo unitario de 12,00 y un costo unitario de 12,00. Ahora actualice el campo de coste unitario a 16.00. El sistema calcula los campos restantes. El ajuste es publicado. Consideremos el proceso de orden infinita MA definido por ytepsilonta (epsilon epsilon.), Donde a es una constante y los epsilonts son i. i.d. N (0, v) variable aleatoria. ¿Cuál es la mejor manera de demostrar que yt es no estacionario? Yo sé que necesito mirar las raíces características del polinomio características y luego juzgar si están o no fuera del círculo unitario, pero cuál es la mejor manera de abordar este problema ¿Debo intentar volver a escribir el proceso de orden infinita MA como un proceso de orden finito AR o es más fácil trabajar el proceso de MA pedido Oct 19 13 a las 21:11

No comments:

Post a Comment